Modular Lego-Electronics

Sohail F. Shaikh, Mohamed T. Ghoneim, Rabab R. Bahabry, Sherjeel M. Khan, Muhammad Mustafa Hussain

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Electronic system components have thousands of individual field effect transistors (FETs) interconnected executing dedicated functions. Assembly yield of >80% will guarantee system failure since a single interconnect failure will result in undesired performance. Hence, a paradigm shift is needed in the self-assembly or integration of state-of-the-art integrated circuits (ICs) for a physically compliant system. Traditionally, most ICs share same geometry with only variations in dimensions and packaging. Here, a generic manufacturable method of converting state-of-the-art complementary metal oxide semiconductor-based ICs into modular Lego-electronics is shown with unique geometry that is physically identifiable to ease manufacturing and enhance throughput. Various geometries at the backside of the silicon die and on the destination site having the same geometry with relaxed dimension (up to 50 µm extra) allow targeted site binding like DNA assembly. Different geometries, angles, and heights for different modules provide a unique identity to each of the ICs. A two-level geometric combination presented here helps in maintaining the uniqueness of individual module to assemble at exact matching site like a perfect lock-and-key model. The assembled ICs offer uncompromised electrical performance, higher yield, and fabrication ease. In future, this method can further be expanded for fluidic assisted self-assembly.
Original languageEnglish (US)
Pages (from-to)1700147
JournalAdvanced Materials Technologies
Volume3
Issue number2
DOIs
StatePublished - Oct 24 2017

Fingerprint Dive into the research topics of 'Modular Lego-Electronics'. Together they form a unique fingerprint.

Cite this