Metal-organic framework nanosheets in polymer composite materials for gas separation

Tania Rodenas, Ignacio Luz, Gonzalo Prieto, Beatriz Seoane, Hozanna Miro, Avelino Corma, Freek Kapteijn, Francesc X. Llabrés I Xamena, Jorge Gascon*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1265 Scopus citations

Abstract

Composites incorporating two-dimensional nanostructures within polymeric matrices have potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of freestanding nanosheets has proved challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometre lateral dimensions and nanometre thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increase in the separation selectivity with pressure. As revealed by tomographic focused ion beam scanning electron microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared with isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications.

Original languageEnglish (US)
Pages (from-to)48-55
Number of pages8
JournalNature Materials
Volume14
Issue number1
DOIs
StatePublished - Jan 1 2015

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Metal-organic framework nanosheets in polymer composite materials for gas separation'. Together they form a unique fingerprint.

Cite this