Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries

Jang Wook Choi, Liangbing Hu, Lifeng Cui, James R. McDonough, Yi Cui

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

Although current collectors take up more weight than active materials in most lithium ion battery cells, so far research has been focused mainly on improving gravimetric capacities of active materials. To address this issue of improving gravimetric capacities based on overall cell components, we develop freestanding nanocomposites made of carbon nanofibers (CNFs) and silicon nanowires (SiNWs) as metal current collector-free anode platforms. Intrinsically large capacities of SiNWs as active materials in conjunction with the light nature of freestanding CNF films allow the nanocomposites to achieve 3-5 times improved gravimetric capacities compared to what have been reported in the literature. Moreover, three-dimensional porous structures in the CNF films facilitate increased mass loadings of SiNWs when compared to flat substrates and result in good cycle lives over 40 cycles. This type of nanocomposite cell suggests that 3D porous platforms consisting of light nanomaterials can provide for higher gravimetric and areal capacities when compared to conventional battery cells based on flat, heavy metal substrates. © 2010 Elsevier B.V. All rights reserved.
Original languageEnglish (US)
Pages (from-to)8311-8316
Number of pages6
JournalJournal of Power Sources
Volume195
Issue number24
DOIs
StatePublished - Dec 15 2010
Externally publishedYes

Fingerprint Dive into the research topics of 'Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries'. Together they form a unique fingerprint.

Cite this