Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

Fang Zhang, Matthew D. Merrill, Justin C. Tokash, Tomonori Saito, Shaoan Cheng, Michael A. Hickner, Bruce E. Logan

Research output: Contribution to journalArticlepeer-review

85 Scopus citations

Abstract

Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.
Original languageEnglish (US)
Pages (from-to)1097-1102
Number of pages6
JournalJournal of Power Sources
Volume196
Issue number3
DOIs
StatePublished - Feb 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors'. Together they form a unique fingerprint.

Cite this