Low-temperature hydrogen production from methanol over a ruthenium catalyst in water

Mahendra K. Awasthi, Rohit Kumar Rai, Silke Behrens, Sanjay K. Singh

Research output: Contribution to journalArticlepeer-review

Abstract

Traditionally, methanol reforming at a very high temperature (>200 °C) has been explored for hydrogen production. Here, we show that in situ generated ruthenium nanoparticles (ca. 1.5 nm) from an organometallic precursor promote hydrogen production from methanol in water at low temperature (90-130 °C), which leads to a practical and efficient approach for low-temperature hydrogen production from methanol in water. The reactivity of ruthenium nanoparticles is tuned to achieve a high rate of hydrogen gas production from methanol. Notably, the use of a pyridine-2-ol ligand significantly accelerated the hydrogen production rate by 80% to 49 mol H2 per mol Ru per hour at 130 °C. Moreover, the studied ruthenium catalyst exhibits appreciably long-term stability to achieve a turnover number of 762 mol H2 per mol Ru generating 186 L of H2 per gram of Ru. This journal is
Original languageEnglish (US)
Pages (from-to)136-142
Number of pages7
JournalCatalysis Science and Technology
Volume11
Issue number1
DOIs
StatePublished - Oct 26 2020

Fingerprint

Dive into the research topics of 'Low-temperature hydrogen production from methanol over a ruthenium catalyst in water'. Together they form a unique fingerprint.

Cite this