Abstract
Quantifying the genetic heterogeneity of a cell population is essential to understanding of biological systems. We develop a universal method to label individual DNA molecules for single-base-resolution haplotype-resolved quantitative characterization of diverse types of rare variants, with frequency as low as 4 × 10−5 , using both short- or long-read sequencing platforms. It provides the first quantitative evidence of persistent nonrandom large structural variants and an increase in singlenucleotide variants at the on-target locus following repair of double-strand breaks induced by CRISPR-Cas9 in human embryonic stem cells.
Original language | English (US) |
---|---|
Journal | Genome biology |
Volume | 21 |
Issue number | 1 |
DOIs | |
State | Published - Aug 24 2020 |