Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n-i-p perovskite/silicon tandem solar cells

Erkan Aydin, Jiang Liu, Esma Ugur, Randi Azmi, George T. Harrison, Yi Hou, Bin Chen, Shynggys Zhumagali, Michele de Bastiani, Mingcong Wang, Waseem Raja, Thomas Allen, Atteq Ur Rehman, Anand Selvin Subbiah, Maxime Babics, Aslihan Babayigit, Furkan Halis Isikgor, Kai Wang, Emmanuel Van Kerschaver, Leonidas TsetserisEdward H. Sargent, Frédéric Laquai, Stefaan De Wolf

Research output: Contribution to journalArticlepeer-review

Abstract

Translating the high power conversion efficiencies of single-junction perovskite solar cells in their classic, non-inverted (n–i–p) architecture to efficient monolithic n–i–p perovskite/silicon tandem solar cells with high current densities has been a persistent challenge due to the lack of low-temperature processable, chemically-insoluble contact materials with appropriate polarity and sufficient optical transparency. To address this, we developed sputtered amorphous niobium oxide (a-NbOx) with ligand-bridged C60 as an efficient electron-selective contact, deposited on the textured-silicon bottom cell. For the sunward, hole-selective contact we implemented a stack of molecularly doped broadband transparent evaporated 2,2′,7,7′-tetra(N,N-di-p-tolyl)amino-9,9-spirobifluorene (spiro-TTB) and atomic layer deposited vanadium oxide, which further enhances the device quantum efficiency. Combining these contact materials with two-dimensional perovskite passivation on the micrometer-thick solution-processed perovskite top cell yields 27% efficient monolithic n–i–p perovskite/silicon tandem solar cells, which represents one of the highest power conversion efficiencies reported on pyramidal textured crystalline silicon bottom cells, and the highest with this polarity.
Original languageEnglish (US)
JournalEnergy & Environmental Science
DOIs
StatePublished - 2021

Fingerprint

Dive into the research topics of 'Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n-i-p perovskite/silicon tandem solar cells'. Together they form a unique fingerprint.

Cite this