Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst

Muhammad Mustafa Hussain, Luqman Atanda, Nabil Al-Yassir, Sulaiman Al-Khattaf

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The kinetics of ethylbenzene (EB) dehydrogenation over a FeO x-meso-Al 2O 3 catalyst is studied. The models were developed based on physicochemical characterization and a CREC fluidized Riser Simulator data. N 2 adsorption shows that the synthesized FeO x-meso-Al 2O 3 catalyst is mesoporous with pore size between 9 and 35nm. TPR profile indicates that iron on meso-Al 2O 3 forms easily reducible nanostructured crystals which is confirmed by TEM image. NH 3- and CO-TPD analysis, respectively reveals the availability of both acidic and basic sites. The dehydrogenation of ethylbenzene on FeO x-meso-Al 2O 3 catalyst mainly gives styrene (∼99%) while a small amount of benzene, toluene and coke are also detected. Based on the experimental observations two Langmuir-Hinshelwood type kinetics models are formulated. The possible catalyst deactivation is expressed as function of EB conversion. Parameters are estimated by fitting of the experimental data implemented in MATLAB. Results show that one type site Langmuir-Hinshelwood model appropriately describes the experimental data, with adequate statistical fitting indicators and also satisfied the physical constraints. The activation energy for the formation of styrene (80kJ/mol) found to be significantly lower than that of the undesired products benzene (144kJ/mol) and toluene (164kJ/mol). The estimated heat of adsorptions of EB and ST are found to be 55kJ/mol and 19kJ/mol, respectively. © 2012 Elsevier B.V.
Original languageEnglish (US)
Pages (from-to)308-321
Number of pages14
JournalChemical Engineering Journal
Volume207-208
DOIs
StatePublished - Oct 2012

Fingerprint Dive into the research topics of 'Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst'. Together they form a unique fingerprint.

Cite this