Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces

Mohammad Younis*, Ronald Miles, Daniel Jordy

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

89 Scopus citations

Abstract

There is strong experimental evidence for the existence of strange modes of failure of microelectromechanical systems (MEMS) devices under mechanical shock and impact. Such failures have not been explained with conventional models of MEMS. These failures are characterized by overlaps between moving microstructures and stationary electrodes, which cause electrical shorts. This work presents modeling and simulation of MEMS devices under the combination of shock loads and electrostatic actuation, which sheds light on the influence of these forces on the pull-in instability. Our results indicate that the reported strange failures can be attributed to early dynamic pull-in instability. The results show that the combination of a shock load and an electrostatic actuation makes the instability threshold much lower than the threshold predicted, considering the effect of shock alone or electrostatic actuation alone. In this work, a single-degree-of-freedom model is utilized to investigate the effect of the shock-electrostatic interaction on the response of MEMS devices. Then, a reduced-order model is used to demonstrate the effect of this interaction on MEMS devices employing cantilever and clamped-clamped microbeams. The results of the reduced-order model are verified by comparing with finite-element predictions. It is shown that the shock-electrostatic interaction can be used to design smart MEMS switches triggered at a predetermined level of shock and acceleration.

Original languageEnglish (US)
Article number030
Pages (from-to)2463-2474
Number of pages12
JournalJournal of Micromechanics and Microengineering
Volume16
Issue number11
DOIs
StatePublished - Nov 1 2006

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Investigation of the response of microstructures under the combined effect of mechanical shock and electrostatic forces'. Together they form a unique fingerprint.

Cite this