Investigation of high contrast and reversible luminescence thermochromism of the quantum confined Cs4PbBr6 perovskite solid

Jin Woo Choi, Namchul Cho, Hee Chul Woo, Byeong M Oh, Jawaher Almutlaq, Osman Bakr, Sung-Hoon Kim, Chang-Lyoul Lee, Jong H Kim

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Thermochromism of organic/inorganic halide perovskites has attracted particular interest due to their potential applications as photoluminescence (PL)-based temperature sensors. However, despite the outstanding PL characteristics, their use as a thermochromic material in practical temperature ranges has been limited because of their poor thermal stability. In this study, we used the quantum confinement effect and exceptional PL quantum efficiency of the Cs4PbBr6 perovskite to demonstrate their high on/off ratio (20) and reversible PL thermochromism in the solid state in practical temperature ranges including room temperature (RT). Systematic photophysical and optical characterization studies, including exciton-phonon scattering, exciton binding energy, exciton decay dynamics, and crystal structure change, were performed to investigate the origin of this unique thermochromic PL property. The results showed that the efficient and highly reversible thermochromic PL emission of the Cs4PbBr6 perovskite is due to its desirable optical properties such as highly luminescent emission, efficient PL quenching at high temperatures, and thermally reversible structural changes.
Original languageEnglish (US)
Pages (from-to)5754-5759
Number of pages6
JournalNanoscale
Volume11
Issue number12
DOIs
StatePublished - 2019

Fingerprint

Dive into the research topics of 'Investigation of high contrast and reversible luminescence thermochromism of the quantum confined Cs4PbBr6 perovskite solid'. Together they form a unique fingerprint.

Cite this