Investigation of an Improved Polymer Flooding Scheme by Compositionally-Tuned Slugs

Ryan Santoso, Victor Torrealba, Hussein Hoteit

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Polymer flooding is an effective enhanced oil recovery technology used to reduce the mobility ratio and improve sweep efficiency. A new polymer injection scheme is investigated that relies on the cyclical injection of low-salinity, low-concentration polymer slugs chased by high-salinity, high-concentration polymer slugs. The effectiveness of the process is a function of several reservoir and design parameters related to polymer type, concentration, salinity, and reservoir heterogeneity. We use reservoir simulations and design-of-experiments (DoE) to investigate the effectiveness of the proposed polymer injection scheme. We show how key objective functions, such as recovery factor and injectivity, are impacted by the reservoir and design parameters. In this study, simulations showed that the new slug-based process was always superior to the reference polymer injection scheme using the traditional continuous injection scheme. Our results show that the process is most effective when the polymer weight is high, corresponding to large inaccessible pore-volumes, which enhances polymer acceleration. High vertical heterogeneity typically reduces the process performance because of increased mixing in the reservoir. The significance of this process is that it allows for increased polymer solution viscosity in the reservoir without increasing the total mass of polymer, and without impairing polymer injectivity at the well.
Original languageEnglish (US)
Pages (from-to)197
JournalProcesses
Volume8
Issue number2
DOIs
StatePublished - Feb 7 2020

Fingerprint

Dive into the research topics of 'Investigation of an Improved Polymer Flooding Scheme by Compositionally-Tuned Slugs'. Together they form a unique fingerprint.

Cite this