Interfacial electronic properties in organic solar cells: A theoretical description

Jean Luc Bredas*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Over the past two decades, the science and engineering of organic semiconducting materials have advanced very rapidly, leading to the demonstration and optimization of a range of organics-based solid-state devices, including organic light-emitting diodes, field-effect transistors, photodiodes, and photovoltaic cells. Particularly attractive for organic semiconductors are flexible plastic substrates that can lead to applications and consumer products with lower cost, highly flexible form factors, and light weight. These attributes, combined with the ability to tune the physical properties of organic (macro)molecules by fine tuning their chemical structure, constitute the main drivers boosting research and industrial interest in organic photovoltaics. Critical to the operation of organic solar cells are the interfaces between (metal or conducting oxide) electrodes and organic layers and between organic layers. This presentation will focus on the computational characterization and optimization of the interfacial properties between the electron donor component (usually a conjugated polymer or a small molecule such as pentacene) and the electron acceptor component (usually a fullerene derivative).

Original languageEnglish (US)
JournalACS National Meeting Book of Abstracts
StatePublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)

Fingerprint Dive into the research topics of 'Interfacial electronic properties in organic solar cells: A theoretical description'. Together they form a unique fingerprint.

Cite this