Instability-induced extinction of diffusion flames established in the stagnant mixing layer

C. H. Sohn, Suk Ho Chung, J. S. Kim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

Nonlinear dynamics of diffusional-thermal instability in diffusion flames is numerically investigated by employing a diffusion flame established in the stagnant mixing layer as a model. Particular attention is focused on the pulsating-instability regime, which arises for Lewis numbers sufficiently greater than unity. Once the steady flame structure is obtained for a prescribed value of the initial Damkohler number, transient evolution of the flame is calculated after a finite amount of the Damkohler-number perturbation is imposed on the steady flame. Depending on whether the initial Damkohler number is greater than the bifurcation Damkohler number or not, evolution of the transient flame structures can be differently characterized. If the initial Damkohler number is smaller than the bifurcation Damkohler number, pulsating instability can be triggered without any external perturbations, while if the initial Damkohler number is greater than the bifurcation Damkohler number, flame oscillations can be amplified only for the perturbed Damkohler number smaller than the threshold Damkohler number. Therefore, character of the nonlinear instability is subcritical. Once the oscillation amplitudes grow too large, flames are eventually led to extinction. Locus of the threshold Damkohler number is presented, which could be used as a revised extinction criterion for diffusion-flamelet library in the laminar flamelet regime of turbulent combustion.

Original languageEnglish (US)
Pages (from-to)404-412
Number of pages9
JournalCombustion and Flame
Volume117
Issue number1-2
DOIs
StatePublished - Apr 1 1999

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Instability-induced extinction of diffusion flames established in the stagnant mixing layer'. Together they form a unique fingerprint.

Cite this