Increasing the sustainability of membrane processes through cascade approach and solvent recovery - Pharmaceutical purification case study

Jeong F. Kim, György Székely, Irina B. Valtcheva, Andrew G. Livingston*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

62 Scopus citations

Abstract

Membrane processes suffer limitations such as low product yield and high solvent consumption, hindering their widespread application in the pharmaceutical and fine chemicals industries. In the present work, the authors propose an efficient purification methodology employing a two-stage cascade configuration coupled to an adsorptive solvent recovery unit, which addresses the two limitations. The process has been validated on purification of active pharmaceutical ingredient (API) from genotoxic impurity (GTI) using organic solvent nanofiltration (OSN). The model system selected for study comprises roxithromycin macrolide antibiotic (Roxi) with 4-dimethylaminopyridine (DMAP) and ethyl tosylate (EtTS) as API and GTIs, respectively. By implementing a two-stage cascade configuration for membrane diafiltration, the process yield was increased from 58% to 95% while maintaining less than 5 ppm GTI in the final solution. Through this yield enhancement, the membrane process has been "revamped" from an unfeasible process to a highly competitive unit operation when compared to other traditional processes. The advantage of size exclusion membranes over other separation techniques has been illustrated by the simultaneous removal of two GTIs from different chemical classes. In addition, a solvent recovery step has been assessed using charcoal as a non-selective adsorbent, and it has been shown that pure solvent can be recovered from the permeate. Considering the costs of solvent, charcoal, and waste disposal, it was concluded that 70% solvent recovery is the cost-optimum point. Conventional single-stage diafiltration (SSD) and two-stage diafiltration (TSD) configurations were compared in terms of green metrics such as cost, mass and solvent intensity, and energy consumption. It was calculated that implementation of TSD, depending on the batch scale, can achieve up to 92% cost saving while reducing the mass and solvent intensity up to 73%. In addition, the advantage of adsorptive solvent recovery has been assessed revealing up to 96% energy reduction compared to distillation and a 70% reduction of CO2 footprint.

Original languageEnglish (US)
Pages (from-to)133-145
Number of pages13
JournalGreen Chemistry
Volume16
Issue number1
DOIs
StatePublished - Jan 2014

ASJC Scopus subject areas

  • Environmental Chemistry
  • Pollution

Fingerprint

Dive into the research topics of 'Increasing the sustainability of membrane processes through cascade approach and solvent recovery - Pharmaceutical purification case study'. Together they form a unique fingerprint.

Cite this