Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

Fred Paul Mark Jjunju, Abraham K. Badu-Tawiah, Anyin Li, Santosh Soparawalla, Iman S. Roqan, Robert Graham Cooks

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.
Original languageEnglish (US)
Pages (from-to)80-88
Number of pages9
JournalInternational Journal of Mass Spectrometry
Volume345-347
DOIs
StatePublished - Jul 2013

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Instrumentation
  • Spectroscopy
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Hydrocarbon analysis using desorption atmospheric pressure chemical ionization'. Together they form a unique fingerprint.

Cite this