High-resolution spectra of carbon nanoparticles: Laboratory simulation of the infrared emission features associated with polycyclic aromatic hydrocarbons

Anming Hu*, Issam Al Khesho, W. W. Duley

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Using surface-enhanced Raman spectroscopy we have obtained high-resolution spectra of individual molecular components containing 102-10 3 carbon atoms at the surface of carbon nanoparticles. A number of well-defined spectral features occur in the 6.2, 7.6, 7.8, and 8.6 μm wavelength range that replicate those found in the infrared emission spectrum of interstellar and circumstellar sources. This suggests that the molecular components present in laboratory samples are of similar composition to those occurring in space and provides additional insight into the chemical species responsible for infrared emission at these wavelengths. In particular, we find that laboratory spectra are produced by a relatively small number of molecular groups containing C=C bonds. These include large polycyclic aromatic hydrocarbons and polyacetylenic chains. Spectral features characteristic of type A, AB, B, and C infrared emission sources appear in different samples, indicating that the observed wavelength variations in astronomical sources can be attributed to changes in molecular size and composition. We also find that the infrared emission feature detected at ≈8.6 μm in type A and B sources may arise from polyacetylenic species. Spectral profiles of laboratory bands are in good agreement with those of observed astronomical features. The broad background underlying the astronomical bands over the 6-9 μm (1660-1100 cm-1) range is also reproduced in laboratory spectra.

Original languageEnglish (US)
JournalAstrophysical Journal
Volume653
Issue number2 II
DOIs
StatePublished - Dec 20 2006

Keywords

  • ISM: lines and bands
  • ISM: molecules
  • Infrared: ISM

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'High-resolution spectra of carbon nanoparticles: Laboratory simulation of the infrared emission features associated with polycyclic aromatic hydrocarbons'. Together they form a unique fingerprint.

Cite this