High-Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer

Carr Hoi Yi Ho, Taesoo Kim, Yuan Xiong, Yuliar Firdaus, Xueping Yi, Qi Dong, Jeromy J. Rech, Abay Gadisa, Ronald Booth, Brendan T. O'Connor, Aram Amassian, Harald Ade, Wei You, Thomas D. Anthopoulos, Franky So

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c-PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT-M and PTB7-Th:IEICO-4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future.
Original languageEnglish (US)
Pages (from-to)2000823
JournalAdvanced Energy Materials
DOIs
StatePublished - May 13 2020

Fingerprint Dive into the research topics of 'High-Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer'. Together they form a unique fingerprint.

Cite this