High-Order Wave Propagation Algorithms for Hyperbolic Systems

David I. Ketcheson, Matteo Parsani, Randall J. LeVeque

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

We present a finite volume method that is applicable to hyperbolic PDEs including spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations (not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space and strong stability preserving Runge--Kutta integration in time. The method can be extended to arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions of balance laws near steady state. This well-balancing is achieved through the $f$-wave Riemann solver and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous properties of the method are demonstrated through numerical examples, including problems in nonconservative form, problems with spatially varying fluxes, and problems involving near-equilibrium solutions of balance laws.
Original languageEnglish (US)
Pages (from-to)A351-A377
Number of pages1
JournalSIAM Journal on Scientific Computing
Volume35
Issue number1
DOIs
StatePublished - Jan 22 2013

Fingerprint Dive into the research topics of 'High-Order Wave Propagation Algorithms for Hyperbolic Systems'. Together they form a unique fingerprint.

Cite this