Half-Duplex and Full-Duplex AF and DF Relaying with Energy-Harvesting in Log-Normal Fading

Khaled M. Rabie, Bamidele Adebisi, Mohamed-Slim Alouini

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Energy-harvesting (EH) and wireless power transfer in cooperative relaying networks have recently attracted a considerable amount of research attention. Most of the existing work on this topic however focuses on Rayleigh fading channels, which represent outdoor environments. In contrast, this paper is dedicated to analyze the performance of dual-hop relaying systems with EH over indoor channels characterized by log-normal fading. Both half-duplex (HD) and full-duplex (FD) relaying mechanisms are studied in this work with decode-and-forward (DF) and amplify-and-forward (AF) relaying protocols. In addition, three EH schemes are investigated, namely, time switching relaying, power splitting relaying and ideal relaying receiver which serves as a lower bound. The system performance is evaluated in terms of the ergodic outage probability for which we derive accurate analytical expressions. Monte Carlo simulations are provided throughout to validate the accuracy of our analysis. Results reveal that, in both HD and FD scenarios, AF relaying performs only slightly worse than DF relaying which can make the former a more efficient solution when the processing energy cost at the DF relay is taken into account. It is also shown that FD relaying systems can generally outperform HD relaying schemes as long as the loop-back interference in FD is relatively small. Furthermore, increasing the variance of the log-normal channel has shown to deteriorate the performance in all the relaying and EH protocols considered.
Original languageEnglish (US)
Pages (from-to)468-480
Number of pages13
JournalIEEE Transactions on Green Communications and Networking
Volume1
Issue number4
DOIs
StatePublished - Aug 15 2017

Fingerprint

Dive into the research topics of 'Half-Duplex and Full-Duplex AF and DF Relaying with Energy-Harvesting in Log-Normal Fading'. Together they form a unique fingerprint.

Cite this