Graph Optimal Transport for Cross-Domain Alignment

Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, Jingjing Liu

Research output: Contribution to journalArticlepeer-review

Abstract

Cross-domain alignment between two sets of entities (e.g., objects in an image, words in a sentence) is fundamental to both computer vision and natural language processing. Existing methods mainly focus on designing advanced attention mechanisms to simulate soft alignment, with no training signals to explicitly encourage alignment. The learned attention matrices are also dense and lacks interpretability. We propose Graph Optimal Transport (GOT), a principled framework that germinates from recent advances in Optimal Transport (OT). In GOT, cross-domain alignment is formulated as a graph matching problem, by representing entities into a dynamically-constructed graph. Two types of OT distances are considered: (i) Wasserstein distance (WD) for node (entity) matching; and (ii) Gromov-Wasserstein distance (GWD) for edge (structure) matching. Both WD and GWD can be incorporated into existing neural network models, effectively acting as a drop-in regularizer. The inferred transport plan also yields sparse and self-normalized alignment, enhancing the interpretability of the learned model. Experiments show consistent outperformance of GOT over baselines across a wide range of tasks, including image-text retrieval, visual question answering, image captioning, machine translation, and text summarization.
Original languageEnglish (US)
JournalICML
StatePublished - Jun 26 2020
Externally publishedYes

Keywords

  • cs.CL
  • cs.CV
  • cs.LG

Fingerprint Dive into the research topics of 'Graph Optimal Transport for Cross-Domain Alignment'. Together they form a unique fingerprint.

Cite this