Giant intrinsic chiro-optical activity in planar dielectric nanostructures

Alexander Y Zhu, Wei Ting Chen, Aun Zaidi, Yao-Wei Huang, Mohammadreza Khorasaninejad, Vyshakh Sanjeev, Cheng-Wei Qiu, Federico Capasso

Research output: Contribution to journalArticlepeer-review

94 Scopus citations

Abstract

The strong optical chirality arising from certain synthetic metamaterials has important and widespread applications in polarization optics, stereochemistry and spintronics. However, these intrinsically chiral metamaterials are restricted to a complicated three-dimensional (3D) geometry, which leads to significant fabrication challenges, particularly at visible wavelengths. Their planar two-dimensional (2D) counterparts are limited by symmetry considerations to operation at oblique angles (extrinsic chirality) and possess significantly weaker chiro-optical responses close to normal incidence. Here, we address the challenge of realizing strong intrinsic chirality from thin, planar dielectric nanostructures. Most notably, we experimentally achieve near-unity circular dichroism with ~90% of the light with the chosen helicity being transmitted at a wavelength of 540 nm. This is the highest value demonstrated to date for any geometry in the visible spectrum. We interpret this result within the charge-current multipole expansion framework and show that the excitation of higher-order multipoles is responsible for the giant circular dichroism. These experimental results enable the realization of high-performance miniaturized chiro-optical components in a scalable manner at optical frequencies.
Original languageEnglish (US)
Pages (from-to)17158-17158
Number of pages1
JournalLight: Science & Applications
Volume7
Issue number2
DOIs
StatePublished - Feb 23 2018
Externally publishedYes

Fingerprint Dive into the research topics of 'Giant intrinsic chiro-optical activity in planar dielectric nanostructures'. Together they form a unique fingerprint.

Cite this