Functional Characterization of Deformation Fields

Etienne Corman, Maks Ovsjanikov

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

In this article, we present a novel representation for deformation fields of 3D shapes, by considering the induced changes in the underlying metric. In particular, our approach allows one to represent a deformation field in a coordinate-free way as a linear operator acting on real-valued functions defined on the shape. Such a representation provides both a way to relate deformation fields to other classical functional operators and enables analysis and processing of deformation fields using standard linear-algebraic tools. This opens the door to a wide variety of applications such as explicitly adding extrinsic information into the computation of functional maps, intrinsic shape symmetrization, joint deformation design through precise control of metric distortion, and coordinate-free deformation transfer without requiring pointwise correspondences. Our method is applicable to both surface and volumetric shape representations and we guarantee the equivalence between the operator-based and standard deformation field representation under mild genericity conditions in the discrete setting. We demonstrate the utility of our approach by comparing it with existing techniques and show how our representation provides a powerful toolbox for a wide variety of challenging problems.
Original languageEnglish (US)
Pages (from-to)1-19
Number of pages19
JournalACM Transactions on Graphics
Volume38
Issue number1
DOIs
StatePublished - Feb 20 2019
Externally publishedYes

ASJC Scopus subject areas

  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Functional Characterization of Deformation Fields'. Together they form a unique fingerprint.

Cite this