Fourier spectral methods for fractional-in-space reaction-diffusion equations

Alfonso Bueno-Orovio, David Kay, Kevin Burrage

Research output: Contribution to journalArticlepeer-review

197 Scopus citations

Abstract

© 2014, Springer Science+Business Media Dordrecht. Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains of ℝ. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.
Original languageEnglish (US)
Pages (from-to)937-954
Number of pages18
JournalBIT Numerical Mathematics
Volume54
Issue number4
DOIs
StatePublished - Apr 1 2014
Externally publishedYes

Fingerprint Dive into the research topics of 'Fourier spectral methods for fractional-in-space reaction-diffusion equations'. Together they form a unique fingerprint.

Cite this