Focused ion beam lithography for two dimensional array structures for photonic applications

S. Cabrini*, A. Carpentiero, R. Kumar, L. Businaro, P. Candeloro, M. Prasciolu, A. Gosparini, C. Andreani, M. De Vittorio, T. Stomeo, Enzo Di Fabrizio

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

56 Scopus citations

Abstract

Two dimensional photonic band gap structures on GaAs/AlGaAs, Si 3N4 and Si/SiO2 has been fabricated using a 30 keV gallium ion beam. This process is being developed as a viable alternative for fast prototyping of high quality 2D photonic crystal devices. The feasibility of high-resolution (down to 80 nm) unit cell fabrication has been demonstrated as well as the longitudinal depth of the holes (more than 600 nm) over a pattern area of 100 × 100 μm and smaller, using FIB milling as well as FIB gas assisted etching. During milling fluorine gas was added in the sample chamber to control the interior shape of the holes and also to reduce the formation of Ga spherical calotte shaped dots. The in-plane photoluminescence emission of some fabricated devices has been optically characterized by exciting the in plane cavities from the top surface of the device by picosecond laser pulses. As expected, by virtue of its higher back mirror reflectivity leading to lower cavity losses, the 2D photonic crystal cavity showed the occurrence of amplified spontaneous emission.

Original languageEnglish (US)
Pages (from-to)11-15
Number of pages5
JournalMicroelectronic Engineering
Volume78-79
Issue number1-4
DOIs
StatePublished - Mar 1 2005
EventProceedings of the 30th International Conference on Micro- and Nano-Engineering -
Duration: Sep 19 2004Sep 22 2004

Keywords

  • Focused ion beam
  • GaAs
  • Photonic crystal
  • Resistless lithography

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Focused ion beam lithography for two dimensional array structures for photonic applications'. Together they form a unique fingerprint.

Cite this