Abstract
Understanding the efficiency of flame arresting devices in extreme conditions and critical locations, such as the inlets of fuel tanks, is required to guarantee that the system design is both safe and optimized. The efficiency of these flame arresting devices is influenced by various parameters such as fuel, mixture fraction, pressure, surface material, surface temperature, flame front velocity, etc. However the significance of flame front velocity to the quenching distance has yet to be quantified. In our preliminary study, it has been observed that the quenching distance is a strong function of flame front velocity. Previously, two different velocity regimes (20 m/s and 100 m/s) were studied; however, to develop a predictive model of this phenomenon, understanding this behavior over a wider range of velocities is required. Experiments were conducted in a 2D rectangular duct connecting an ignition chamber to a secondary chamber. Stoichiometric methane-air mixtures at initial conditions 1 bar and 298 K are used in this study. Different duct configurations with similar quenching elements are used for achieving flame front velocities in different regimes. The influence of flame front velocity on quenching distance is discussed in this paper.
Original language | English (US) |
---|---|
State | Published - Jan 1 2017 |
Event | 10th U.S. National Combustion Meeting - College Park, United States Duration: Apr 23 2017 → Apr 26 2017 |
Conference
Conference | 10th U.S. National Combustion Meeting |
---|---|
Country | United States |
City | College Park |
Period | 04/23/17 → 04/26/17 |
Keywords
- Flame quenching
- High velocity flames
- Surface quenching
ASJC Scopus subject areas
- Chemical Engineering(all)
- Physical and Theoretical Chemistry
- Mechanical Engineering