Film stresses and electrode buckling in organic solar cells

Vitali Brand, Kemal Levi, Michae D. McGehee, Reinhold H. Dauskardt

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.
Original languageEnglish (US)
Pages (from-to)80-85
Number of pages6
JournalSolar Energy Materials and Solar Cells
Volume103
DOIs
StatePublished - Aug 2012
Externally publishedYes

Fingerprint Dive into the research topics of 'Film stresses and electrode buckling in organic solar cells'. Together they form a unique fingerprint.

Cite this