Extinction of strained premixed flames of hydrogen/air/steam mixture: local equilibrium temperature and local equivalence ratio

C. S. Yoo*, S. D. Lee, Suk Ho Chung

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

The effect of steam addition on the structure and extinction of hydrogen/air premixed flames is investigated numerically with a detailed kinetic mechanism by adopting both counterflow and stagnation-point flow configurations as model problems. For a specified equivalence ratio of hydrogen/air mixture, the flames in a stagnation-point flow can be maintained to higher steam content compared to those in a counterflow. This can be explained based on the local strain rates defined at the location of maximum heat release rate. The effects of preferential diffusion and reaction incompleteness caused by flame stretch and the effect of steam addition on flame extinction can be successfully quantified by adopting a local equilibrium temperature, which can be determined from chemical equilibrium calculation using the temperature and concentrations of a local mixture in a flow field. The structure of near-stoichiometric flames with the variation in steam content can be successfully explained by introducing a local equivalence ratio.

Original languageEnglish (US)
Pages (from-to)227-242
Number of pages16
JournalCombustion science and technology
Volume155
Issue number1
DOIs
StatePublished - Jan 1 2000

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Cite this