Exploring the Leidenfrost Effect for the Deposition of High-Quality In2 O3 Layers via Spray Pyrolysis at Low Temperatures and Their Application in High Electron Mobility Transistors

Ivan Isakov, Hendrik Faber, Max Grell, Gwenhivir Wyatt-Moon, Nikos Pliatsikas, Thomas Kehagias, George P. Dimitrakopulos, Panos P. Patsalas, Ruipeng Li, Thomas D. Anthopoulos

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

The growth mechanism of indium oxide (InO) layers processed via spray pyrolysis of an aqueous precursor solution in the temperature range of 100-300 °C and the impact on their electron transporting properties are studied. Analysis of the droplet impingement sites on the substrate's surface as a function of its temperature reveals that Leidenfrost effect dominated boiling plays a crucial role in the growth of smooth, continuous, and highly crystalline InO layers via a vapor phase-like process. By careful optimization of the precursor formulation, deposition conditions, and choice of substrate, this effect is exploited and ultrathin and exceptionally smooth layers of InO are grown over large area substrates at temperatures as low as 252 °C. Thin-film transistors (TFTs) fabricated using these optimized InO layers exhibit superior electron transport characteristics with the electron mobility reaching up to 40 cm V s, a value amongst the highest reported to date for solution-processed InO TFTs. The present work contributes enormously to the basic understanding of spray pyrolysis and highlights its tremendous potential for large-volume manufacturing of high-performance metal oxide thin-film transistor electronics.
Original languageEnglish (US)
Pages (from-to)1606407
JournalAdvanced Functional Materials
Volume27
Issue number22
DOIs
StatePublished - Apr 6 2017

Fingerprint

Dive into the research topics of 'Exploring the Leidenfrost Effect for the Deposition of High-Quality In2 O3 Layers via Spray Pyrolysis at Low Temperatures and Their Application in High Electron Mobility Transistors'. Together they form a unique fingerprint.

Cite this