Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor

Florent Karsenty, Mani Sarathy, Casimir Togbé, Charles K. Westbrook, Guillaume Dayma, P. Dagaut, Marco Mehl, William J. Pitz

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)4680-4689
Number of pages10
JournalEnergy & Fuels
Volume26
Issue number8
DOIs
StatePublished - Aug 3 2012

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Chemical Engineering(all)
  • Fuel Technology

Fingerprint

Dive into the research topics of 'Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor'. Together they form a unique fingerprint.

Cite this