Enhanced Pollutant Adsorption and Regeneration of Layered Double Hydroxide-Based Photoregenerable Adsorbent.

Min-Jeong Suh, Seunghyun Weon, Renyuan Li, Peng Wang, Jae-Hong Kim

Research output: Contribution to journalArticlepeer-review

Abstract

Efforts to combine photocatalysts with organic and inorganic adsorbents in engineered composite materials have been pursued extensively to harness sunlight for a green, sustainable regeneration of exhausted adsorbent. Recent advances combining benchmark photocatalyst, titanium dioxide (TiO2), with an inorganic adsorbent, layered double hydroxides (LDHs), have shown potential for an inorganic adsorbent-photocatalyst system but faced critical limitations in realizing practical applications: low adsorption capacity and slow, inefficient photocatalytic regeneration. This study presents an enhanced TiO2/LDH based material that demonstrates a dramatically increased efficiency for both decontamination through adsorption and subsequent solar, photocatalytic regeneration. The combination of delamination and high temperature treatment of LDH is utilized to drastically enhance the adsorption capacity toward model contaminant Methyl Orange to 1450-1459 mg/g, which is even higher than most commercial and lab-synthesized carbon-based adsorbents. Light-active plasmonic nanoparticles are employed to increase the photocatalytic regeneration performance, and experimental results show that the synthesized composite material regains above 97% of its adsorption capacity for 5 cycles of regeneration and readsorption. Overall, the results of this study demonstrate potential for the development of inorganic multifunctional adsorbents that can harness a variety of chemical reactions without the loss of adsorptivity over long-term use.
Original languageEnglish (US)
JournalEnvironmental Science & Technology
DOIs
StatePublished - Jun 20 2020

Fingerprint Dive into the research topics of 'Enhanced Pollutant Adsorption and Regeneration of Layered Double Hydroxide-Based Photoregenerable Adsorbent.'. Together they form a unique fingerprint.

Cite this