Electrostatically Tunable Nanomechanical Shallow Arches

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We report an analytical and experimental study on the tunability of in-plane doubly-clamped nanomechanical arches under varied DC bias conditions at room temperature. For this purpose, silicon based shallow arches are fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer on a silicon-on-insulator (SOI) wafer. The experimental results show good agreement with the analytical results with a maximum tunability of 108.14% for 180 nm thick arch with a transduction gap of 1 μm between the beam and the driving/sensing electrodes. The high tunability of shallow arches paves the ways for highly tunable band pass filtering applications in high frequency range.
Original languageEnglish (US)
Title of host publicationVolume 4: 22nd Design for Manufacturing and the Life Cycle Conference; 11th International Conference on Micro- and Nanosystems
PublisherASME International
ISBN (Print)9780791858165
DOIs
StatePublished - Nov 3 2017

Fingerprint

Dive into the research topics of 'Electrostatically Tunable Nanomechanical Shallow Arches'. Together they form a unique fingerprint.

Cite this