Electrochemical properties and intermediate-temperature fuel cell performance of dense yttrium-doped barium zirconate with calcium addition

Ziqi Sun, Emiliana Fabbri, Lei Bi, Enrico Traversa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Scopus citations

Abstract

Although BaZr 0.8Y 0.2O 3-δ(BZY) possesses large bulk proton conductivity and excellent chemical stability, its poor sinterability and grain boundaries block proton conduction. In this work, the effect of Ca as a co-dopant and as a sintering aid (as CaO), on the sinterability, proton conductivity, and fuel cell performance of BZY was investigated. The addition of 4 mol% CaO significantly improved the BZY sinterability: BZY pellets with densities of 92.7% and 97.5% with respect to the theoretical density were obtained after sintering at 1500°C and 1600°C, respectively. The improved BZY sinterability by CaO addition resulted also in a large proton conductivity; at 600°C, the total conductivity of BZY-CaO was 2.14 × 10 -3 S/cm, in wet Ar. Anode-supported fuel cells with 25 μm-thick BZY-CaO electrolyte membranes were fabricated by a dual-layer co-firing technique. The peak power density of the fuel cell with a BZY-Ni/BZY-4CaO/BZY-LSCF (La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ) configuration was 141 mW/cm 2 at 700°C, several times larger than the reported values of BZY electrolyte membrane fuel cells sintered with the addition of CuO or ZnO, demonstrating promising features for practical fuel cell applications.

Original languageEnglish (US)
Pages (from-to)627-635
Number of pages9
JournalJournal of the American Ceramic Society
Volume95
Issue number2
DOIs
StatePublished - Feb 2012
Externally publishedYes

ASJC Scopus subject areas

  • Ceramics and Composites
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Electrochemical properties and intermediate-temperature fuel cell performance of dense yttrium-doped barium zirconate with calcium addition'. Together they form a unique fingerprint.

Cite this