Effect of unsteady stretch on spark-ignited flame kernel survival

D. A. Eichenberger, William Roberts*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

The chemistry-turbulence interaction remains one of the most important topics in combustion research. The ignition of premixed reactants in a highly turbulent environment is fundamentally coupled to this chemistry-turbulence interaction. The spark-ignition (SI) internal combustion (IC) engine relics on the ability of the flame kernel to survive the high-strain-rate, unsteady environment of a turbulent flowfield and successfully transition into a fully developed flame to operate cleanly and efficiently. If certain length and velocity scales within the turbulence spectrum are found to promote flame kernel growth, then by tailoring the flow passages and aerodynamics of the intake valves, piston, and combustion chamber, it may be possible to increase the efficiency and reduce the emissions of SI IC engines. This paper describes a novel experimental investigation of a spark-generated flame kernel interacting with a single vortex toroid with well-defined length and velocity scales. This experiment measured the ability of a vortex to quench a growing kernel in a very lean methane-air mixture at atmospheric pressure. The absence of superequilibrium OH concentrations, qualitatively determined by planar laser-induced fluorescence (PLIF), was used as in indicator of quenching. It was found that larger eddies are more effective at globally quenching the flamefront, requiring a lower strength, when compared to vortices with a smaller characteristic length. At the globally quenching condition, the maturity of the kernel was then increased incrementally until the vortex was no longer able to completely strain out the kernel. The result of this was surprising in that the larger vortices had a much narrower range of kernel maturity for which the vortex could still quench the growing kernel.

Original languageEnglish (US)
Pages (from-to)469-478
Number of pages10
JournalCombustion and Flame
Volume118
Issue number3
DOIs
StatePublished - Aug 1 1999

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Effect of unsteady stretch on spark-ignited flame kernel survival'. Together they form a unique fingerprint.

Cite this