DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea

Sara Borin*, Elena Crotti, Francesca Mapelli, Isabella Tamagnini, Cesare Corselli, Daniele Daffonchio

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Background. Extracellular dissolved DNA has been demonstrated to be present in many terrestrial and aquatic environments, actively secreted, or released by decaying cells. Free DNA has the genetic potential to be acquired by living competent cells by horizontal gene transfer mediated by natural transformation. The aim of this work is to study the persistence of extracellular DNA and its biological transforming activity in extreme environments like the deep hypersaline anoxic lakes of the Mediterranean Sea. The brine lakes are separated from the upper seawater by a steep chemocline inhabited by stratified prokaryotic networks, where cells sinking through the depth profile encounter increasing salinity values and osmotic stress. Results. Seven strains belonging to different taxonomic groups isolated from the seawater-brine interface of four hypersaline lakes were grown at medium salinity and then incubated in the brines. The osmotic stress induced the death of all the inoculated cells in variable time periods, between 2 hours and 144 days, depending on the type of brine rather than the taxonomic group of the strains, i.e. Bacillaceae or gamma-proteobacteria. The Discovery lake confirmed to be the most aggressive environment toward living cells. In all the brines and in deep seawater dissolved plasmid DNA was substantially preserved for a period of 32 days in axenic conditions. L'Atalante and Bannock brines induced a decrease of the supercoiled form up to 70 and 40% respectively; in the other brines only minor changes in plasmid conformation were observed. Plasmid DNA after incubation in the brines maintained the capacity to transform naturally competent cells of Acinetobacter baylii strain BD413. Conclusion. Free dissolved DNA is likely to be released by the lysis of cells induced by osmotic stress in the deep hypersaline anoxic lakes. Naked DNA was demonstrated to be preserved and biologically active in these extreme environments, and hence could constitute a genetic reservoir of traits acquirable by horizontal gene transfer.

Original languageEnglish (US)
Article number10
JournalSaline Systems
Volume4
Issue number1
DOIs
StatePublished - Sep 12 2008

ASJC Scopus subject areas

  • Aquatic Science
  • Ecology, Evolution, Behavior and Systematics
  • Water Science and Technology
  • Microbiology

Cite this