Discrete Vector Calculus and Helmholtz Hodge Decomposition for Classical Finite Difference Summation by Parts Operators

Hendrik Ranocha, Katharina Ostaszewski, Philip Heinisch

Research output: Contribution to journalArticlepeer-review

Abstract

In this article, discrete variants of several results from vector calculus are studied for classical finite difference summation by parts operators in two and three space dimensions. It is shown that existence theorems for scalar/vector potentials of irrotational/solenoidal vector fields cannot hold discretely because of grid oscillations, which are characterised explicitly. This results in a non-vanishing remainder associated with grid oscillations in the discrete Helmholtz Hodge decomposition. Nevertheless, iterative numerical methods based on an interpretation of the Helmholtz Hodge decomposition via orthogonal projections are proposed and applied successfully. In numerical experiments, the discrete remainder vanishes and the potentials converge with the same order of accuracy as usual in other first-order partial differential equations. Motivated by the successful application of the Helmholtz Hodge decomposition in theoretical plasma physics, applications to the discrete analysis of magnetohydrodynamic (MHD) wave modes are presented and discussed.
Original languageEnglish (US)
Pages (from-to)581-611
Number of pages31
JournalCommunications on Applied Mathematics and Computation
Volume2
Issue number4
DOIs
StatePublished - Feb 10 2020

Fingerprint

Dive into the research topics of 'Discrete Vector Calculus and Helmholtz Hodge Decomposition for Classical Finite Difference Summation by Parts Operators'. Together they form a unique fingerprint.

Cite this