Discovery of accessible locations using region-based geo-social data

Yan Wang, Jianmin Li, Ying Zhong, Shunzhi Zhu, Danhuai Guo, Shuo Shang

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Geo-social data plays a significant role in location discovery and recommendation. In this light, we propose and study a novel problem of discovering accessible locations in spatial networks using region-based geo-social data. Given a set Q of query regions, the top-k accessible location discovery query (k ALDQ) finds k locations that have the highest spatial-density correlations to Q. Both the spatial distances between locations and regions and the POI (point of interest) density within the regions are taken into account. We believe that this type of k ALDQ query can bring significant benefit to many applications such as travel planning, facility allocation, and urban planning. Three challenges exist in k ALDQ: (1) how to model the spatial-density correlation practically, (2) how to prune the search space effectively, and (3) how to schedule the searches from multiple query regions. To tackle the challenges and process k ALDQ effectively and efficiently, we first define a series of spatial and density metrics to model the spatial-density correlation. Then we propose a novel three-phase solution with a pair of upper and lower bounds of the spatial-density correlation and a heuristic scheduling strategy to schedule multiple query regions. Finally, we conduct extensive experiments on real and synthetic spatial data to demonstrate the performance of the developed solutions.
Original languageEnglish (US)
Pages (from-to)929-944
Number of pages16
JournalWorld Wide Web
Volume22
Issue number3
DOIs
StatePublished - Mar 17 2018

Fingerprint Dive into the research topics of 'Discovery of accessible locations using region-based geo-social data'. Together they form a unique fingerprint.

Cite this