Diagnosing Error in Temporal Action Detectors

Humam Alwassel, Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Despite the recent progress in video understanding and the continuous rate of improvement in temporal action localization throughout the years, it is still unclear how far (or close?) we are to solving the problem. To this end, we introduce a new diagnostic tool to analyze the performance of temporal action detectors in videos and compare different methods beyond a single scalar metric. We exemplify the use of our tool by analyzing the performance of the top rewarded entries in the latest ActivityNet action localization challenge. Our analysis shows that the most impactful areas to work on are: strategies to better handle temporal context around the instances, improving the robustness w.r.t. the instance absolute and relative size, and strategies to reduce the localization errors. Moreover, our experimental analysis finds the lack of agreement among annotator is not a major roadblock to attain progress in the field. Our diagnostic tool is publicly available to keep fueling the minds of other researchers with additional insights about their algorithms.
Original languageEnglish (US)
Title of host publicationLecture Notes in Computer Science
PublisherSpringer Nature
Pages264-280
Number of pages17
ISBN (Print)9783030012182
DOIs
StatePublished - Oct 7 2018

Fingerprint Dive into the research topics of 'Diagnosing Error in Temporal Action Detectors'. Together they form a unique fingerprint.

Cite this