Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light

Mustafa Ugur Daloglu, Aniruddha Ray, Zoltan Gorocs, Matthew Xiong, Ravinder Malik, Gal Bitan, Euan McLeod, Aydogan Ozcan

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Significant progress in characterization of nanoparticles and biomolecules was enabled by the development of advanced imaging equipment with extreme spatial-resolution and sensitivity. To perform some of these analyses outside of well-resourced laboratories, it is necessary to create robust and cost-effective alternatives to existing high-end laboratory-bound imaging and sensing equipment. Towards this aim, we have designed a holographic on-chip microscope operating at an ultraviolet illumination wavelength (UV) of 266 nm. The increased forward scattering from nanoscale objects at this short wavelength has enabled us to detect individual sub-30 nm nanoparticles over a large field-of-view of >16 mm2 using an on-chip imaging platform, where the sample is placed at ≤0.5 mm away from the active area of an opto-electronic sensor-array, without any lenses in between. The strong absorption of this UV wavelength by biomolecules including nucleic acids and proteins has further enabled high-contrast imaging of nanoscopic aggregates of biomolecules, e.g., of enzyme Cu/Zn-superoxide dismutase, abnormal aggregation of which is linked to amyotrophic lateral sclerosis (ALS) - a fatal neurodegenerative disease. This UV-based wide-field computational imaging platform could be valuable for numerous applications in biomedical sciences and environmental monitoring, including disease diagnostics, viral load measurements as well as air- and water-quality assessment.
Original languageEnglish (US)
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - Mar 9 2017
Externally publishedYes

Fingerprint Dive into the research topics of 'Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light'. Together they form a unique fingerprint.

Cite this