Boron-Catalyzed Polymerization of Phenyl-Substituted Allylic Arsonium Ylides toward Nonconjugated Emissive Materials from C3/C1 Monomeric Units

Research output: Contribution to journalArticlepeer-review

Abstract

Two novel allylic arsonium ylide monomers with a phenyl (steric and electronic effect) group at different positions were synthesized and used in boron-catalyzed polymerization to produce a series of well-defined polymers, poly(2-phenyl-propenylene-co-2-phenyl-propenylidene) (P2-PhAY) and poly(3-phenyl-propenylene-co-3-phenyl-propenylidene) (P3-PhAY), with unusual structures but a controllable molecular weight and relatively low polydispersity. The backbone of these polymers consists of a mixture of C1 (chain grows by one carbon atom at a time) and C3 (chain grows by three carbon atoms at a time) monomeric units, as determined by 1H, 13C, and 1H–13C HSQC 2D NMR. Based on the experimental results and density functional theoretical (DFT) calculations, we were able to propose a mechanism that takes into account not only the steric hindrance, but also the electron effect of the phenyl group. In addition, a nontraditional intrinsic luminescence was observed from the nonconjugated P2-PhAY and P3-PhAY; such unexpected emission is attributed to the formation of C3-unit clusters, as evidenced by ultraviolet–visible and fluorescence spectroscopy.
Original languageEnglish (US)
Pages (from-to)1287-1294
Number of pages8
JournalACS Macro Letters
DOIs
StatePublished - Oct 4 2021

ASJC Scopus subject areas

  • Inorganic Chemistry
  • Organic Chemistry
  • Materials Chemistry
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Boron-Catalyzed Polymerization of Phenyl-Substituted Allylic Arsonium Ylides toward Nonconjugated Emissive Materials from C3/C1 Monomeric Units'. Together they form a unique fingerprint.

Cite this