Bis(carbazolyl) derivatives of pyrene and tetrahydropyrene: Synthesis, structures, optical properties, electrochemistry, and electroluminescence

Bilal R. Kaafarani*, Ala'A O. El-Ballouli, Roman Trattnig, Alexandr Fonari, Stefan Sax, Brigitte Wex, Chad Risko, Rony S. Khnayzer, Stephen Barlow, Digambara Patra, Tatiana V. Timofeeva, Emil J.W. List, Jean-Luc Bredas, Seth R. Marder

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

Tetrahydropyrene and pyrene have been functionalized in their 2,7-positions with carbazole and 3,6-di-tert-butylcarbazole groups, and the properties of these new compounds are compared to analogous carbazole and 3,6-di-tert- butylcarbazole derivatives of benzene and biphenyl using X-ray crystallography, UV-vis absorption and fluorescence spectroscopy, electrochemistry, and quantum-chemical calculations. The absorption spectra are similar to those of their biphenyl-bridged analogues, although TD-DFT calculations indicate a different description of the excited states in the pyrene case, with the lowest observed absorption no longer corresponding to the S0 → S 1 transition. The 3,6-di-tert-butylcarbazole compounds show reversible electrochemical oxidations; the benzene, biphenyl, tetrahydropyrene, or pyrene bridging groups have little impact on the first oxidation potential. Bilayer organic light-emitting diodes incorporating the tetrahydropyrene and pyrene derivatives as emitters show deep-blue electroluminescence.

Original languageEnglish (US)
Pages (from-to)1638-1650
Number of pages13
JournalJournal of Materials Chemistry C
Volume1
Issue number8
DOIs
StatePublished - Feb 28 2013

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Bis(carbazolyl) derivatives of pyrene and tetrahydropyrene: Synthesis, structures, optical properties, electrochemistry, and electroluminescence'. Together they form a unique fingerprint.

Cite this