Bio-Inspired Robust Membranes Nanoengineered from Interpenetrating Polymer Networks of Polybenzimidazole/Polydopamine

Dan Zhao, Jeong F. Kim, Gergo Ignacz, Peter Pogany, Young Moo Lee, Gyorgy Szekely*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Marine mussel inspired polydopamine (PDA) has received increased attention due to its good thermal and chemical stability as well as strong adhesion on most materials. In this work, high-performance nanofiltration membranes based on interpenetrating polymer networks (IPN) incorporating PDA and polybenzimidazole (PBI) were developed for organic solvent nanofiltration (OSN). Generally, in order to obtain solvent stability, polymers need to be covalently cross-linked under harsh conditions, which inevitably leads to losses in permeability and mechanical flexibility. Surprisingly, by in situ polymerization of dopamine within a PBI support, excellent solvent resistance and permeance of polar aprotic solvents were obtained without covalent cross-linking of the PBI backbone due to the formation of an IPN. The molecular weight cutoff and permeance of the membranes can be fine-tuned by changing the polymerization time. Robust membrane performance was achieved in conventional and emerging green polar aprotic solvents (PAS) in a wide temperature range covering a10 °C to +100 °C. It was successfully demonstrated that the in situ polymerization of PDA - creating an IPN - can provide a simple and green alternative to covalent cross-linking of membranes. To elucidate the nature of the solvent stability, a detailed analysis was performed that revealed that physical entanglement along with strong secondary interaction synergistically enable solvent resistance with as low as 1-3% PDA content.

Original languageEnglish (US)
Pages (from-to)125-133
Number of pages9
JournalACS Nano
Volume13
Issue number1
DOIs
StatePublished - Jan 22 2019

Keywords

  • biocoatings
  • in situ polymerization
  • nanofiltration
  • polar aprotic solvents
  • polydopamine
  • surface modification
  • temperature effect

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Bio-Inspired Robust Membranes Nanoengineered from Interpenetrating Polymer Networks of Polybenzimidazole/Polydopamine'. Together they form a unique fingerprint.

Cite this