Bayesian Gaussian copula factor models for mixed data

Jared S. Murray, David B. Dunson, Lawrence Carin, Joseph E. Lucas

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models accommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables, the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem, we propose a novel class of Bayesian Gaussian copula factor models that decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference.We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this article are implemented in the R package bfa (available from http://stat.duke.edu/jsm38/software/bfa). Supplementary materials for this article are available online. © 2013 American Statistical Association.
Original languageEnglish (US)
Pages (from-to)656-665
Number of pages10
JournalJournal of the American Statistical Association
Volume108
Issue number502
DOIs
StatePublished - Dec 16 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Bayesian Gaussian copula factor models for mixed data'. Together they form a unique fingerprint.

Cite this