Automated IC engine model development with uncertainty propagation

George Peter Edward Brownbridge*, Andrew Smallbone, Weerapong Phadungsukanan, Sebastian Mosbach, Markus Kraft, Bengt Johansson

*Corresponding author for this work

Research output: Contribution to conferencePaperpeer-review

11 Scopus citations

Abstract

This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented. Data from seven operating points have been extracted from the proposed data model and have been incorporated into a state-of-the-art in-cylinder IC engine model through the optimization of model parameters whilst accounting for the model parameter and experimental uncertainties.

Original languageEnglish (US)
DOIs
StatePublished - Jul 6 2011
EventSAE 2011 World Congress and Exhibition - Detroit, MI, United States
Duration: Apr 12 2011Apr 14 2011

Other

OtherSAE 2011 World Congress and Exhibition
CountryUnited States
CityDetroit, MI
Period04/12/1104/14/11

ASJC Scopus subject areas

  • Automotive Engineering
  • Industrial and Manufacturing Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution

Fingerprint

Dive into the research topics of 'Automated IC engine model development with uncertainty propagation'. Together they form a unique fingerprint.

Cite this