Arabian Red Sea coastal soils as potential mineral dust sources

P. Jish Prakash, Georgiy L. Stenchikov, Weichun Tao, Tahir Yapici, Bashir H. Warsama, Johann Engelbrecht

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate, marine ecology and air quality studies.
Original languageEnglish (US)
Pages (from-to)11991-12004
Number of pages14
JournalAtmospheric Chemistry and Physics
Volume16
Issue number18
DOIs
StatePublished - Sep 26 2016

Fingerprint Dive into the research topics of 'Arabian Red Sea coastal soils as potential mineral dust sources'. Together they form a unique fingerprint.

Cite this