Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions

Daniel I. Pineda*, Benjamin Wolk, Jyh Yuan Chen, Robert W. Dibble

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

The downsizing of internal combustion engines to increase fuel economy leads to challenges in both obtaining ignition and stabilizing combustion at boosted intake pressures and high exhaust gas recirculation dilution conditions. The use of non-thermal plasma ignition technologies has shown promise as a means to more reliably ignite dilute charge mixtures at high pressures. Despite progress in fundamental research on this topic, both the capabilities and operation implications of emerging non-thermal plasma ignition technologies in internal combustion engine applications are not yet fully explored. In this work, we document the effects of using a corona discharge ignition system in a single cylinder gasoline direct injection research engine relative to using a traditional inductive spark ignition system under conditions associated with both naturally aspirated (8 bar BMEP) and boosted (20 bar BMEP) loads at moderate (2000 rpm) and high (4000 rpm) engine speeds. Analysis of experimental results shows that relative to optimum load-speed equivalent baseline operation, using the corona discharge ignition system improves fuel economy by (1) reducing cycle-to-cycle variability, (2) promoting more complete combustion, and (3) enabling combustion phasing advancement at high loads by extending the knock limit. Additionally, the system reduces emissions by extending the practical exhaust gas recirculation limits of stable operation.

Original languageEnglish (US)
Pages (from-to)1970-1988
Number of pages19
JournalSAE International Journal of Engines
Volume9
Issue number3
DOIs
StatePublished - Jan 3 2016

ASJC Scopus subject areas

  • Automotive Engineering
  • Fuel Technology

Fingerprint

Dive into the research topics of 'Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions'. Together they form a unique fingerprint.

Cite this