An explicit marching on-in-time solver for the time domain volume magnetic field integral equation

Sadeed B Sayed, Huseyin Arda Ulku, Hakan Bagci

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Transient scattering from inhomogeneous dielectric objects can be modeled using time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marching on-in-time (MOT) techniques. Classical MOT-TDVIE solvers expand the field induced on the scatterer using local spatio-temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation in space and time yields a system of equations that is solved by time marching. Depending on the type of the basis and testing functions and the time step, the time marching scheme can be implicit (N. T. Gres, et al., Radio Sci., 36(3), 379-386, 2001) or explicit (A. Al-Jarro, et al., IEEE Trans. Antennas Propag., 60(11), 5203-5214, 2012). Implicit MOT schemes are known to be more stable and accurate. However, under low-frequency excitation, i.e., when the time step size is large, they call for inversion of a full matrix system at very time step.
Original languageEnglish (US)
Title of host publication2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
ISBN (Print)9781479937462
DOIs
StatePublished - Jul 2014

Fingerprint Dive into the research topics of 'An explicit marching on-in-time solver for the time domain volume magnetic field integral equation'. Together they form a unique fingerprint.

Cite this