An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

Christian Bayer, Alvaro Moraes, Raul Tempone, Pedro Vilanova

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

© 2016 Taylor & Francis Group, LLC. ABSTRACT: In this work, we present an extension of the forward–reverse representation introduced by Bayer and Schoenmakers (Annals of Applied Probability, 24(5):1994–2032, 2014) to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, that is, SRNs conditional on their values in the extremes of given time intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the expectation-maximization algorithm to the phase I output. By selecting a set of overdispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.
Original languageEnglish (US)
Pages (from-to)193-231
Number of pages39
JournalStochastic Analysis and Applications
Volume34
Issue number2
DOIs
StatePublished - Feb 18 2016

Fingerprint Dive into the research topics of 'An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks'. Together they form a unique fingerprint.

Cite this