Alkylidene fluorene liquid crystalline semiconducting polymers for organic field effect transistor devices

Martin Heeney, Clare Bailey, Mark Giles, Maxim Shkunov, David Sparrowe, Steve Tierney, Weimin Zhang, Iain McCulloch*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Organic electronic devices comprising arrays of organic field effect transistors (OFETs) are expected to create a range of novel applications for which the ability to be fabricated in large areas, on flexible substrates, with nonconventional shapes, and at low cost are key enabling factors. To improve the electrical performance of such devices, new solution processable organic semiconductors are required with high charge carrier mobilities and environmental stability. This work describes the molecular design of a p-type charge transport liquid crystalline polymer, in an attempt to control the factors responsible for both mobility and stability. Molecules were designed that were able to exhibit closely packed, π stacked morphologies, which can result in efficient intermolecular charge hopping and hence high mobility. Molecular manipulation of the conjugated π electron system was required to optimize the HOMO energy level, to both resist oxidation and be able to readily accept holes from a source electrode.

Original languageEnglish (US)
Pages (from-to)5250-5256
Number of pages7
JournalMacromolecules
Volume37
Issue number14
DOIs
StatePublished - Jul 13 2004
Externally publishedYes

ASJC Scopus subject areas

  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Alkylidene fluorene liquid crystalline semiconducting polymers for organic field effect transistor devices'. Together they form a unique fingerprint.

Cite this