TY - JOUR
T1 - Aggregation ability of three phylogenetically distant anammox bacterial species
AU - Ali, Muhammad
AU - Shaw, Dario Rangel
AU - Zhang, Lei
AU - Haroon, Mohamed Fauzi
AU - Narita, Yuko
AU - Emwas, Abdul-Hamid M.
AU - Saikaly, Pascal
AU - Okabe, Satoshi
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): CRG_R2_13_SAIK_KAUST_1
Acknowledgements: This research financially supported by Nagase Science and Technology Foundation and Institute for Fermentation, Osaka (IFO), which were granted to Satoshi Okabe, and by Competitive Research Grant (CRG_R2_13_SAIK_KAUST_1) from King Abdullah University of Science and Technology (KAUST). Lei Zhang was supported partly by the Monbukagakusho Honors Scholarship for Privately Financed International Students offered by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. When Muhammad Ali was a Post-Doctoral Fellow at Hokkaido University, Sapporo Japan, he was supported by Graduate School of Engineering, Hokkaido University, Japan.
PY - 2018/6/12
Y1 - 2018/6/12
N2 - Anaerobic ammonium-oxidizing (anammox) bacteria are well known for their aggregation ability. However, very little is known about cell surface physicochemical properties of anammox bacteria and thus their aggregation abilities have not been quantitatively evaluated yet. Here, we investigated the aggregation abilities of three different anammox bacterial species: “Candidatus Brocadia sinica”, “Ca. Jettenia caeni” and “Ca. Brocadia sapporoensis”. Planktonic free-living enrichment cultures of these three anammox species were harvested from the membrane bioreactors (MBRs). The physicochemical properties (e.g., contact angle, zeta potential, and surface thermodynamics) were analyzed for these anammox bacterial species and used in the extended DLVO theory to understand the force-distance relationship. In addition, their extracellular polymeric substances (EPSs) were characterized by X-ray photoelectron spectroscopy and nuclear magnetic resonance. The results revealed that the “Ca. B. sinica” cells have the most hydrophobic surface and less hydrophilic functional groups in EPS than other anammox strains, suggesting better aggregation capability. Furthermore, aggregate formation and anammox bacterial populations were monitored when planktonic free-living cells were cultured in up-flow column reactors under the same conditions. Rapid development of microbial aggregates was observed with the anammox bacterial population shifts to a dominance of “Ca. B. sinica” in all three reactors. The dominance of “Ca. B. sinica” could be explained by its better aggregation ability and the superior growth kinetic properties (higher growth rate and affinity to nitrite). The superior aggregation ability of “Ca. B. sinica” indicates significant advantages (efficient and rapid start-up of anammox reactors due to better biomass retention as granules and consequently stable performance) in wastewater treatment application.
AB - Anaerobic ammonium-oxidizing (anammox) bacteria are well known for their aggregation ability. However, very little is known about cell surface physicochemical properties of anammox bacteria and thus their aggregation abilities have not been quantitatively evaluated yet. Here, we investigated the aggregation abilities of three different anammox bacterial species: “Candidatus Brocadia sinica”, “Ca. Jettenia caeni” and “Ca. Brocadia sapporoensis”. Planktonic free-living enrichment cultures of these three anammox species were harvested from the membrane bioreactors (MBRs). The physicochemical properties (e.g., contact angle, zeta potential, and surface thermodynamics) were analyzed for these anammox bacterial species and used in the extended DLVO theory to understand the force-distance relationship. In addition, their extracellular polymeric substances (EPSs) were characterized by X-ray photoelectron spectroscopy and nuclear magnetic resonance. The results revealed that the “Ca. B. sinica” cells have the most hydrophobic surface and less hydrophilic functional groups in EPS than other anammox strains, suggesting better aggregation capability. Furthermore, aggregate formation and anammox bacterial populations were monitored when planktonic free-living cells were cultured in up-flow column reactors under the same conditions. Rapid development of microbial aggregates was observed with the anammox bacterial population shifts to a dominance of “Ca. B. sinica” in all three reactors. The dominance of “Ca. B. sinica” could be explained by its better aggregation ability and the superior growth kinetic properties (higher growth rate and affinity to nitrite). The superior aggregation ability of “Ca. B. sinica” indicates significant advantages (efficient and rapid start-up of anammox reactors due to better biomass retention as granules and consequently stable performance) in wastewater treatment application.
UR - http://hdl.handle.net/10754/628290
UR - http://www.sciencedirect.com/science/article/pii/S0043135418304512
UR - http://www.scopus.com/inward/record.url?scp=85049342763&partnerID=8YFLogxK
U2 - 10.1016/j.watres.2018.06.007
DO - 10.1016/j.watres.2018.06.007
M3 - Article
C2 - 29933181
AN - SCOPUS:85049342763
VL - 143
SP - 10
EP - 18
JO - Water Research
JF - Water Research
SN - 0043-1354
ER -