A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells

Jun Peng, Jafar Iqbal Khan, Wenzhu Liu, Esma Ugur, The Duong, Yiliang Wu, Heping Shen, Kai Wang, Hoang Dang, Erkan Aydin, Xinbo Yang, Yimao Wan, Klaus J. Weber, Kylie R. Catchpole, Frédéric Laquai, Stefaan De Wolf, Thomas P. White

Research output: Contribution to journalArticlepeer-review

211 Scopus citations


The performance of state-of-the-art perovskite solar cells is currently limited by defect-induced recombination at interfaces between the perovskite and the electron and hole transport layers. These defects, most likely undercoordinated Pb and halide ions, must either be removed or passivated if cell efficiencies are to approach their theoretical limit. In this work, a universal double-side polymer passivation approach is introduced using ultrathin poly(methyl methacrylate) (PMMA) films. Very high-efficiency (≈20.8%) perovskite cells with some of the highest open circuit voltages (1.22 V) reported for the same 1.6 eV bandgap are demonstrated. Photoluminescence imaging and transient spectroscopic measurements confirm a significant reduction in nonradiative recombination in the passivated cells, consistent with the voltage increase. Analysis of the molecular interactions between perovskite and PMMA reveals that the carbonyl (CO) groups on the PMMA are responsible for the excellent passivation via Lewis-base electronic passivation of Pb2+ ions. This work provides new insights and a compelling explanation of how PMMA passivation works, and suggests future directions for developing improved passivation layers.
Original languageEnglish (US)
Pages (from-to)1801208
JournalAdvanced Energy Materials
Issue number30
StatePublished - Sep 16 2018


Dive into the research topics of 'A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells'. Together they form a unique fingerprint.

Cite this